Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cell Rep ; 39(13): 111004, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1944462

ABSTRACT

Vaccine boosters and infection can facilitate the development of SARS-CoV-2 antibodies with improved potency and breadth. Here, we observe superimmunity in a camelid extensively immunized with the SARS-CoV-2 receptor-binding domain (RBD). We rapidly isolate a large repertoire of specific ultra-high-affinity nanobodies that bind strongly to all known sarbecovirus clades using integrative proteomics. These pan-sarbecovirus nanobodies (psNbs) are highly effective against SARS-CoV and SARS-CoV-2 variants, including Omicron, with the best median neutralization potency at single-digit nanograms per milliliter. A highly potent, inhalable, and bispecific psNb (PiN-31) is also developed. Structural determinations of 13 psNbs with the SARS-CoV-2 spike or RBD reveal five epitope classes, providing insights into the mechanisms and evolution of their broad activities. The highly evolved psNbs target small, flat, and flexible epitopes that contain over 75% of conserved RBD surface residues. Their potencies are strongly and negatively correlated with the distance of the epitopes from the receptor binding sites.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , SARS-CoV-2
2.
Nat Commun ; 12(1): 4676, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1340999

ABSTRACT

Interventions against variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Stable and potent nanobodies (Nbs) that target the receptor binding domain (RBD) of SARS-CoV-2 spike are promising therapeutics. However, it is unknown if Nbs broadly neutralize circulating variants. We found that RBD Nbs are highly resistant to variants of concern (VOCs). High-resolution cryoelectron microscopy determination of eight Nb-bound structures reveals multiple potent neutralizing epitopes clustered into three classes: Class I targets ACE2-binding sites and disrupts host receptor binding. Class II binds highly conserved epitopes and retains activity against VOCs and RBDSARS-CoV. Cass III recognizes unique epitopes that are likely inaccessible to antibodies. Systematic comparisons of neutralizing antibodies and Nbs provided insights into how Nbs target the spike to achieve high-affinity and broadly neutralizing activity. Structure-function analysis of Nbs indicates a variety of antiviral mechanisms. Our study may guide the rational design of pan-coronavirus vaccines and therapeutics.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Binding Sites , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/classification , Broadly Neutralizing Antibodies/metabolism , COVID-19/prevention & control , Epitopes/chemistry , Epitopes/metabolism , Humans , Models, Molecular , Mutation , Protein Binding , SARS-CoV-2/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/classification , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL